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ABSTRACT
Bike sharing systems have been deployed in many cities to
promote green transportation and a healthy lifestyle. One of
the key factors for maximizing the utility of such systems is
placing bike stations at locations that can best meet users’ trip
demand. Traditionally, urban planners rely on dedicated sur-
veys to understand the local bike trip demand, which is costly
in time and labor, especially when they need to compare many
possible places. In this paper, we formulate the bike station
placement issue as a bike trip demand prediction problem.
We propose a semi-supervised feature selection method to
extract customized features from the highly variant, hetero-
geneous urban open data to predict bike trip demand. Evalu-
ation using real-world open data from Washington, D.C. and
Hangzhou shows that our method can be applied to different
cities to effectively recommend places with higher potential
bike trip demand for placing future bike stations.
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INTRODUCTION
In recent years, an increasing number of cities have intro-
duced bike sharing programs to promote environmental sus-
tainability and encourage a healthy lifestyle [1, 2]. Such bike
sharing programs allow people to pick up and drop off pub-
lic bikes at self-service stations to make short trips within a
city. Given the large investment in infrastructure necessary
to support a bike sharing program, such as arranging parking
facilities and making the roads more bike friendly, it is essen-
tial for urban planners to maximize the utility of public bikes.
One of the key factors for promoting citizen participation in a
bike sharing program is placing bike stations at locations that
can best meet the trip demand of potential users [3].

Traditionally, urban planners use surveys to collect informa-
tion on local bike trip demand (BTD) to guide bike station
placement [4, 5]. Although existing literature has identified a
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large set of factors that may affect bike trip demand in general
[1, 6, 7], each city has its own environmental, social, and cul-
tural characteristics, resulting in different adoption patterns
of bike sharing programs. Therefore, it is necessary for urban
planners to understand the needs and tastes locally. Each time
urban planners want to extend the bike sharing program to a
new area in the city, they send out investigators to conduct a
user survey on site. However, this approach consumes a great
amount of time, labor, and money, especially when planners
need to compare a large number of possible places.

The increasing availability of heterogeneous, fine-grained ur-
ban open data provides the opportunity to inexpensively as-
sess bike trip demand across a city [8]. For instance, areas
with popular restaurants as determined by Foursquare check-
in number might generate high bike trip demand. In this pa-
per, we propose a data-driven approach to predict bike trip
demand to assist bike station placement. However, due to
the considerable volume and variety of urban open data, it is
not straightforward to directly select representative features
related to bike trip demand. Therefore, we identify the most
relevant datasets from a large pool of urban open data sources
based on prior knowledge, and extract customized features to
characterize bike station utilization in individual cities. Then,
we feed these features into predictive models to rank the po-
tential of locations for placing future bike stations. The main
contributions of this paper include:

1. A novel use case of the heterogeneous urban open data,
namely bike sharing station placement.

2. A semi-supervised feature selection method to extract cus-
tomized (city-specific) features from the highly variant,
heterogeneous urban open data for bike trip demand pre-
diction. First, by exploiting prior knowledge from bike
sharing program surveys, we identify three key factors re-
lated to bike trip demand from the corresponding open data
sources: area functions from online map services, human
activity from location-based social networks, and demo-
graphics from open government data. We then construct a
set of customized features for each city by selecting the
most informative dimensions of each factor via correla-
tion analysis, rather than adopting a static feature selection
method regardless of city context.

3. A performance evaluation using real-world bike sharing
system data in two cities (Washington, D.C., USA and
Hangzhou, China). The results show that our method
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can be applied to different cities to effectively recommend
places with higher potential bike trip demand for placing
future bike stations.

RELATED WORK
Researchers have conducted extensive surveys on the bike
sharing programs deployed in various cities to examine the
history [7], facilities [1], user characteristics [4], etc. In or-
der to guide the design and implementation of bike sharing
programs, urban planners usually conduct dedicated biker-
oriented surveys of potential users to understand the actual
demand in their cities [5, 4]. Based on these mobility sur-
veys, Garcia et al. proposed a method to estimate the spatial
distribution of bike trip demand [3]. In general, however, such
surveys are time-consuming and expensive to conduct.

Recently, many researchers have resorted to urban open data
to address challenges in urban development. Such data are
usually easy-accessible and free of cost [9]. Examples in-
clude sensing city dynamics from bike sharing system data
[10], inferring air quality [11] and urban noise [12] based on
public air monitoring data and 311 data, and evaluating con-
tainer port performance of a harbor city leveraging ship GPS
traces and maritime open data [13]. In this paper, we present
a first attempt to address the bike sharing station placement
problem with urban open data. The work closest to ours is
presented in [14], where the optimal retail store location is
recommended only using Foursquare check-in data for New
York City. Our work is different from [14] in terms of data
source, data fusion approach, and application domain.

FACTOR ANALYSIS
To understand what factors may impact the bike trip demand
in cities with bike sharing programs, researchers and urban
planners have conducted a series of surveys [2, 3, 4, 5]. These
surveys have shown that the following factors are key in de-
termining the bike trip demand of an area:

1. Area function [3]. High bike trip demand often occurs in
or near residential areas, transition hubs, and tourist attrac-
tions, but relatively less in industrial areas.

2. Human activity [2, 4]. People tend rent a bike for certain
activities, such as commuting, shopping, entertainment,
and personal errands.

3. Demographics [4, 5]. Bike sharing system user community
tends to be considerably younger, highly educated, and rel-
atively less affluent.

Taking the above results as prior knowledge, we first select a
set of relevant urban open datasets to these factors, and then
analyze the most informative dimensions of each factor via
correlation analysis.

Data Selection
The usage data of many bike sharing programs are pub-
licly accessible [2], such as the Capital Bikeshare System
[15] of Washington, D.C. and the Public Bicycle System of
Hangzhou [16]. We define the daily utilization of a bike sta-
tion as the average number of bike rentals and returns per day.
In the following analysis, we use the daily utilization of a bike

Table 1: Top-10 POI categories most relevant to bike station uti-
lization with the corresponding correlation coefficient.

Washington, D.C. Hangzhou
1 Cafe and Bakery (0.53) Residential area (0.65)
2 Bar and Restaurant (0.52) Vegetable market (0.57)
3 Hotel and Hostel (0.49) Hospital (0.55)
4 Work Place (0.45) KTV (Karaoke) (0.51)
5 Residential area (0.38) Hotel and Hostel (0.49)
6 Retail store (0.35) Retail store (0.45)
7 Bank and ATM (0.34) Work place (0.41)
8 Law firm (0.32) Bar and Restaurant (0.38)
9 Gym and Yoga (0.31) Hair salon and Spa (0.31)
10 Museum and Gallery (0.25) Movie theater (0.29)

station as the proxy1 for BTD in its service area, which is a
circular area around the station [3].

We identify the following open datasets to characterize the
above-mentioned factors.

1. Point of Interest (POI) dataset. POI distributions have been
used to describe area functions [17, 18]. For instance, an
area where a large number of retail stores are located has
a high probability to be a business area. We retrieve POI
data using the Google Places API [19].

2. Check-in dataset. User check-ins in Location Based So-
cial Networks (LBSNs) can serve as an indicator of hu-
man activities [20]. For instance, check-ins at a restaurant
are likely to associate with dining activities. We retrieve
check-in data using the Foursquare API [21], and calculate
the daily check-in number for an area over a period of time.

3. Demographics dataset. Demographics data of an area,
such as the median household income, median age, and
education level, come from the open data catalogs of gov-
ernment portal [22].

Area Functions and Bike Trip Demand
We characterize an area’s functions by the categorical dis-
tribution of POIs, and analyze the correlation between area
functions and BTD. Specifically, for each bike station, we
first retrieve all POIs within its service area, and group them
into a set of POI categories (e.g. restaurants). For each cate-
gory, we then compute the Spearman’s correlation coefficient
[23] between the POI number and the daily utilization across
all the bike stations to measure their monotonic relationship.

Table 1 shows the top-10 POI categories most relevant to the
daily utilization of all bike stations in Washington, D.C. and
Hangzhou. Such results align well with surveys regarding
bike trip origins and destinations in these two cities [4, 6].
Note that some POI categories in the top-10 list, such as veg-
etable market and KTV (Karaoke), are unique to Hangzhou,
and others to Washington, D.C. Such variability indicates the
need to construct customized features for different cities.

Human Activity and Bike Trip Demand
We take LBSN check-ins as the semantic proxy of human ac-
tivities. We first retrieve all check-ins within the service area
of each bike station and map them to a pre-defined list of hu-
man activities (in this paper we adopt the activity list in the
1We note that due to the limit of station capacity and bike availabil-
ity, the actual demand might be larger than the observation.
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Table 2: Top-10 human activities most relevant to bike station
utilization with the corresponding correlation coefficient.

Washington, D.C. Hangzhou
1 Transit (Bus, Metro) (0.58) Dinner and Meal (0.49)
2 Entertainment (Bar) (0.57) Shopping (Food) (0.45)
3 Dinner and Meal (0.54) Sight-seeing (0.41)
4 Personal errands (0.53) Meeting (Tea house) (0.38)
5 Shopping (Clothes) (0.51) Entertainment (Karaoke) (0.36)
6 Exercise (Gym, Yoga) (0.44) Personal errands (0.36)
7 Visiting (Museum) (0.42) At school (0.31)
8 At work (0.39) Transit (Bus) (0.29)
9 At home (0.26) At work (0.24)
10 At school (0.24) At home (0.21)

Utilization
D.C.

350

0

150

Utilization
Hangzhou
700

0

300

Figure 1: Correlation matrix between bike station utilization
and demographics features in Washington, D.C. (top-right) and
Hangzhou (bottom-left), respectively.

2013 Capital Bikeshare survey questionnaire [4]). We then
use the daily check-in number to approximate the frequency
of each activity. Finally, we determine the most pertinent ac-
tivity types to BTD by comparing the Spearman’s correlation
coefficient between activity frequency and utilization.

Table 2 shows the top-10 human activities most relevant to the
daily utilization of all bike stations in Washington, D.C. and
Hangzhou; these activities are consistent with the bike trip
purposes reported in surveys [4, 6]. As with Table 1, some
activities are unique to a specific city, such as meeting at tea
house and entertainment at Karaoke in Hangzhou.

Demographics and Bike Trip Demand
We validate the correlation between demographic factors and
BTD. Specifically, for each bike station, we map its service
area to a census tract [24] and retrieve the corresponding
median household income, median age, and education level
(bachelor’s degree percentage) information.

Figure 1 illustrates the correlation matrix [11] in Washington,
D.C. and Hangzhou, where each row/column denotes one de-
mographic factor and each data point represents the daily uti-
lization of a bike station. We can see that stations with higher
utilization (i.e. darker points) are usually located in neigh-
borhoods with younger population, moderate income level,
and/or higher education level. These findings are consistent
with the bike sharing system user surveys [4, 6], and provide
insights on how neighborhood demographics affect bike shar-
ing system adoption.
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Figure 2: Overview of the framework.

FRAMEWORK
We propose a two-phase framework to determine optimal
placement of bike sharing stations leveraging urban open
data, as shown in Figure 2. In the offline learning phase, we
first identify representative data sources that correspond to
the factors critical to BTD as determined by the bike sharing
program surveys in a target city. We then extract city-specific
features for each factor to learn a model for BTD prediction.
In the online inference phase, we extract the same set of fea-
tures for each candidate area and feed them into the learned
model to predict its potential BTD. The candidate areas with
higher potential BTD are considered to be better locations for
placing future bike stations.

Feature Extraction
We extract a set of city-specific features for each factor based
on the analysis in the previous section.

1. Area Function Feature Ff . We select the top-j POI cate-
gories most relevant to BTD for a specific city, i.e., Ff =
(f1, f2, ..., fj). Each element of the feature denotes the sig-
nificance of a function, which is the total number of POIs
of the corresponding category.

2. Human Activity Feature Fh. We select the top-k human
activities most relevant to BTD for the city, i.e., Fh =
(h1, h2, ..., hk). Each element of the feature corresponds
to the intensity of a human activity, which is the total num-
ber of daily check-ins of the corresponding type.

3. Demographics Feature Fd. We construct the demographics
feature vector Fd = (di, da, de) for the city, where di cor-
responds to the median household income, da corresponds
to the median age, and de corresponds to the education
level (bachelor’s degree percentage).

Model Selection
We need to select models that are capable of incorporat-
ing heterogeneous features to effectively predict the poten-
tial BTD of candidate areas and rank them. We adopt the
regression-and-ranking methodologies. Specifically, we first
train a supervised regression model with existing bike sta-
tion utilization, and then rank the candidates according to
the predicted BTD using that model. We compare two su-
pervised learning algorithms in our evaluation, i.e., Linear
Regression-and-Ranking (LRR) and Artificial Neural Net-
work Regression-and-Ranking (ANNRR) [25].
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Table 3: Summary of datasets from two cities.

Washington, D.C. Hangzhou
Data collection period 2010–2013 2011–2012
Bike stations 203 2,115
POIs 16,520 145,119
Check-ins 17,356,179 1,553,354
Census Tracts 181 882
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Figure 3: Accuracy@x of the baselines and proposed methods.

EVALUATION

Experiment Settings
We collect datasets about bike station utilization and the rel-
evant factors from Washington, D.C., USA and Hangzhou,
China, as summarized in Table 3.

Baseline Methods
We use the following two baseline methods in comparison
with the proposed LRR and ANNRR algorithms. (1) Nearby
Station Average (NEARBY), which uses the average utiliza-
tion of four nearby bike stations to estimate the BTD of the
candidate areas. (2) Single Data Source Static Model (SS).
We adapt the methodology of [14] to extract a set of static fea-
tures from only Foursquare check-in data for predicting bike
trip demands in different cities. The major features include
neighborhood density and diversity modeled by check venue
types, and area popularity modeled by check-in numbers.

Parameter Settings
We use a service area radius r = 200m for Washington, D.C.,
and r = 250m for Hangzhou, respectively, based on the cor-
responding surveys [4, 6]. To obtain optimal features of top-k
POI categories and top-j check-in types, we experimentally
select k = j = 10 for Washington, D.C., and k = j = 15 for
Hangzhou, as Hangzhou is more diverse in terms of city func-
tions and human activities. We repeat our experiments 1,000
times in both cities. For each experiment, we randomly select
10 stations as candidate areas and use the rest for training in
the offline learning phase.

Evaluation Metrics
We compare the ranking results with the ideal ranking list R̄,
where candidates are sorted by their actual daily bike utiliza-
tion. We evaluate the performance with the following two
metrics frequently used in information retrieval:

1. To assess the accuracy of the top recommendation, we use
Accuracy@x(1 ≤ x ≤ 10), which measures the fre-
quency the top recommendation is appearing among the
top-x of R̄.

Table 4: nDCG@3 of the baseline and proposed methods.

Washington, D.C. Hangzhou
NEARBY 0.47 0.38
SS 0.63 0.51
LRR 0.77 0.75
ANNRR 0.86 0.85

2. To further assess the quality of the overall ranking in the
top-k recommendations, we adopt the top-k Normalized
Discounted Cumulative Gain (nDCG@k) metric [26]:

nDCG@k =
DCG@k

IDCG@k
,DCG@k =

k∑
i=1

2reli − 1

log2(i + 1)

where IDCG@k is the DCG@k value of R̄, and reli is
the relevance score of item i. To calculate reli, we use the
position of i in R̄, i.e., reli = |R̄| − pi + 1, where pi is the
position of item i (1 ≤ pi ≤ |R̄|).

Evaluation Results
Results on Accuracy@x and nDCG@3 are shown in Fig-
ure 3 and Table 4, respectively. Our methods (ANNRR and
LRR) outperform the two baseline methods in terms of top
recommendation accuracy and overall ranking quality in both
cities. Specifically, ANNRR is better than LRR in both mea-
sures, achieving more than 80% accuracy of top recommen-
dation and over 0.85 nDCG@3 for both cities. In contrast,
the baseline methods (SS and NEARBY) do not work as well
in Hangzhou as in Washington, D.C., implying that the two
cities have different characteristics in urban development and
human flow. In summary, our method effectively adapt to
the specific contexts of individual cities by applying semi-
supervised customization of dynamic features.

We compare the top recommendation accuracy between AM
hours (6:00 - 10:00) and PM hours (15:00 - 21:00) and find
out that the accuracy is higher in PM hours (84% vs. 71% in
Washington, D.C.). One possible reason is that most check-
ins are performed in PM hours [27], and thus characterizing
the human activities more accurately in PM hours. We also
validate that our method runs efficiently on different scales of
cities. The running time (including a training and 1,000 times
of prediction) of ANNR on a server equipped with an Intel
Xeon CPU is 4.3 seconds for the middle-scale bike sharing
system in Washington, D.C., and 12.5 seconds for the world’s
largest bike sharing system in Hangzhou.

CONCLUSION
In this paper, we leverage open data to predict bike trip de-
mand and recommend optimal placement of bike sharing sta-
tions. We propose a two-phase feature selection method to
extract customized features from heterogeneous urban open
data for bike trip demand prediction. The evaluation results
show that our semi-supervised method outperforms the state-
of-the-art baseline approaches on recommending locations
for optimal bike station placement. Specifically, customized
factor identification and feature selection based on city char-
acteristics can achieve consistent performance when applying
to heterogeneous urban open data in different cities.
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